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Abstract 

We investigate the general form of a third-order linear differential operator that is required 
to commute with the Schr6dinger Hamiltonian in two dimensions, and find that the 
tbAxd-order part must be a polynomial of third degree in the generators of the Euclidean 
group. Partial differential equations that the potential V must satisfy are derived, and solved 
for the special cases where the Schr6dinger equation separates in polar or Cartesian co- 
ordinates. The functions V thus obtained are nonsingular, but are periodic through elliptic 
functions. After separation of variables, the Schr~Sdinger equation gives Lame's equation. 

1. Introduction 

Following the work of  Stackel (1891) and Robertson ( t928) ,  the condi- 
tions for the separability of  Schr6dinger's equation were investigated (Eisen- 
hart, 1934). Using the powerful methods of  Riemannian geometry, Eisenhart 
found that, if the potential energy has appropriate forms, the Schr6dinger 
equation separates in the same coordinate systems as the Helmholtz equation: 
four systems in the two-dimensional case and eleven in the three-dimensional 
case. The forms o f  the potential energy (for one particle) were also obtained 
(EisenharL 1948) both in curvilinear and Cartesian coordinates. It is interest- 
ing to note that, man2¢ years later, a search for constants of  the motion in non- 
relativistic quantum mechanics led to the same separation problem and the 
same forms o f  the potential energy. Considering only operators o f  second 
degree in the momenta, it was found (Fris et al., 1965; Winternitz et at., 1966) 
that such quadratic constants o f  the motion can exist in the two-dimensional 
case if and only if there is an orthogonal coordinate system in which the 
variables separate. In the three-dimensional case, the same condition o f  
separability is equivalent to the existence of  two quadratic constants of  the 
motion (Makarov et al., 1967). In the separated Schr6dinger equation the 

t Permanent address: Department of Mathematics, Visva-Bharati University, 
P.O. Santiniketan (W,B.), India. 

"lTqis journal is copyrighted by Plenum. Each article is available for $7.50 from Plenum 
Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. 

829 



830 MAJUMDAR AND ENGLEFIELD 

potential energy part appears as a sum of  arbitrary functions of individual 
coordinates. The arbitrariness is partly or wholly removed if the equation 
separates in two or more coordinate systems, either of different types, or of 
the same type but translated or rotated with respect to one another. Some of 
the terms in the potential energy so determined become singular on entire 
lines and surfaces and are therefore not of much physical interest. But the 
main result, namely, the connection of  separability with the existence of  quad- 
ratic constants of  the motion, is certainly of  interest, and has prompted the 
present authors to undertake an investigation on higher-order constants of  the 
motion. 

To understand the nature of the problem and to have an idea of  the diffi- 
culties that are likely to arise in such an investigation we consider, in the two- 
dimensional case, a third-order operator of the type 

L = qSlPl 3 + ~2p12p2 + q~3plp2 2 + ~4p2 a 

+ q~SPl 2 + q~6PlP2 +~bTP22 + q}sPl + ~ 9 P 2  + ~  (1.1) 

where Pl = 3/~x, P2 = b/by, and the ~b's are functions of x and y. Following 
the procedure adopted previously (Winternitz et al., 1966) we evaluate the 
commutator [L,H] [with H =  -½(pl 2 +p2 z) + V = --~A +/1] and obtain a 
system of partial differential equations for the determination of the unknown 
~'s and V. As a first step towards a solution we eliminate the ~b's and obtain 
two equations, of the second and the third order, in V alone. These equations 
possess high symmetry and, properly handled, are likely to yield interesting 
results. Postponing a more detailed study of the equations to a future date we 
consider here two simple special cases in which most of the constants appear- 
ing in the equations are set equal to zero. The variables separate in polar co- 
ordinates in the first case and in Cartesian coordinates in the second case. The 
separated equation for the potential, in both the cases, has a solution of the 
form V = A + B sn2(u, k) (u = cvx, fly, 70), and the lowest eigenfunctions are 
sn(u, k), cn(u, k), dn(u, k) with periods 4/£ or 2K, where K is the complete 
elliptic integral of the first kind. We do not consider here other periodic 
solutions and quasiperiodic solutions of Bloch's type. By making k approach 
unity one can also obtain a Hulthen-l~e potential, and the corresponding 
eigenfunctions. When the expressions for the qTs are substituted in (1.1), L is 
found to be irreducible and to have the eigenvalue zero for nondegenerate 
periodic functions. 

2. The Differential Equations 

Evaluating the commutator [L, H] and separately equating to zero the 
coefficients of  the various powers o fpa  and P2 we have the following system 
of equations for the determination of  ~1 . . . . .  ~7: 

~btx = 0, (~ly = -@2x, q}2y = --t~3x, ~3y = --~4x, q~4y = 0 (2.1) 

A01 = --2dPSx, A~O2 = --2~5y -- 2q~6x 

A~3 = --2~b6y -- 2q~Tx, A~b4 = --2q57y (2.2) 
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where 01x = ~ 0 1 / ~ x ,  etc. From the structure of the equations (2.1) it is evident 
that 01 is a cubic iny only and 04 is a cubic in x only. Once the forms of 01 
and 44 are known the expressions for the other 0's can be written down by 
inspection. Thus 

01 = aY 3 + b Y  2 + c y  + d 

02 = - 3 a x y  2 - 2 b x y  - c x  - f y 2  _ h y  - k (2.3) 

03  = 3 a x 2 y  + b x  2 + 2 f x y  + h x  + g y  + I 

04  = - a x 3  - f x 2  - g x  - e 

and  

Os = - 3 a x y  - b x  + m y  2 + (q  + f ) y  + r 

06  = 3 8 x 2  - 2 m x y  - 3 a y  z + (n  - b ) y  - q x  + s (2.4) 

07  = 3 a x y  + m x  2 - n x  + f y  - r 

The constants appearing in these expressions are all arbitrary. 
Previously (Winternitz et al., 1966) it was shown that the most general 

differential operator that may appear in a Second-order constant of  the motion 
consists of an arbitrary symmetric polynomial of degree 2 in the generators of 
the Euclidean group, i.e., in P t , P 2  andM= a/80 where 0 is the polar angle. 
Substituting (2.3) and (2.4) into (1.1) gives the extension of this result to the 
third-order case: 

( L  - OsP  l - 4 9 P 2  - 0 )  = - a M 3  + d P  l 3 - eP23 - k p 1 2 p  2 + Ip l p 2 2  

+ ½ h ( p 2 M p l  + p i M P 2 )  - C p l M P l  - g p 2 M p 2  

+ b M p  I M  - f M p 2 M  + (polynomial of degree 2 

in Pt ,  P2 and 3/) (2.5) 

(Note: first-order terms are absorbed by redefining 0s and 09-) 
We are now faced with the much harder task of determining the remaining 

functions 48, 49, 0, and Vwhich satisfy the system of linked equations 

--301 Vx -- 0 2 V y  = 0 8 x  + m 

--202 V x  - 248 Vy =48y + 09x (2.6) 

--43 Vx -~ 344 Vy = 09y + m 

301Vxx + 202Vxy + 03 Vyy + 205Vx + 06Vy = -Ox - 1AO 8 

02Vxx + 203Wxy t- 304Vyy -k O6Vx "1" 247Vy = - 4 y  - ½ ~ 4 9  (2.7) 

L V = H O  (2.8) 
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Elimination of Cs, 09, and ¢ from (2.6) and (2.7) gives 

(~3y + ~2x -- ¢6)Vxx + ( ¢ 3 x  -- ¢2y  + 2 0 5  --  2~7)Vxy 

+ ( 0 6  --  ¢2x  --  ¢3y)Vyy + ( 2 ¢ 5 y  - ¢6x  - ¢2yy + ¢3xy)'Vx 

+ (¢6y : 2¢7x - ¢2xy + Caxx )Vy  = 0 (2.9) 

and eliminating ¢8 and 09 from (2.6) only gives 

( 2 ¢  2 - -  3 0 4 )  Vxxy + (203 - 301 )  gxyy - ¢2 t~yy  - (93 gxxx 

+ 2(¢2y - ~3x)Vxx + 2(¢3y - 3¢4x - 3¢1y + ¢2x)Vxy 

+ 2(03~ - ¢ 2 y ) V r y  + (2¢2~y - 30~yy - ¢3x~)V~ 

+ (2¢axy -- ¢2yy -- 3¢4xx) Vy = 0 (2.10) 

The second-order equation (2.9) has the same form as that previously obtained 
by eliminating ¢ (Winternitz et al., 1966), but the third-order equation (2.10) 
is new. To determine Ca, 09, ¢, and Vit is best to start from (2.9) and (2.10). 
One may either seek a common solution of the two equations or choose the 
constants in such a manner that one of  the equations is trivially satisfied (i.e., 
reduces to 0 = 0) leaving the other to give conditions on V. The function V 
obtained in this way may be substituted into (2.6) and (2.7) and Cs, 09, ¢ are 
determined. Finally the remaining constraint (2.8) on V must be investigated. 

3. A Solution in Polar Coordinates 

To obtain a particular solution with the Schr6dinger equation separable in 
polar coordinates we set equal to zero all the constants in equations (2.3) and 
(2.4) except m and a. Then equations (2.9) and (2.10) have a common solution 
of the form 

V(r, O) = F(r) + r-2 G( O ) (3.1) 

where F and G are arbitrary functions. With these specializations, and also 
setting a = ~, equations (2.6) become 

¢8x = - m  + sin 2 0 G '(0), ¢ 9 y  = - m  + cos 2 0 G '(0) 

Csy + ¢9x = - 2  sin 0 cos 0 G '(0) (3.2) 

(2.8) becomes 

- ~ (  Vooo + Vo ) + m Voo + mr Vr = --½ A¢ -- ¢s Vx - ¢9 Vy (3.3) 

while (2.7) are equivalent to 

G'(O) = - r¢r  - ½ x A ¢ 8  - -  ½YA¢9 

G"(O) - 2mG'(O) = D0 - ½YAC8 + ½xA¢9 (3.4) 
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Equations (3.2) are satisfied by  

0s = - m r  cos 0 - r sin 0 G(O) 

09 = - m r  sin 0 + r cos 0 G(O) (3.5) 

A more general solution of  (3.2) contains three arbitrary constants, but 
including these turns out to give the same potentials, either relative to rotated 
axes, or with an additive constant, or with G differing by a constant [this 
difference can he absorbed ha F i n  (3.1)] .  

Finally, substituting (3.5) into (3.4) gives 

Or = O, 0o = ½ G " -  2mG'  (3.6) 

while (3.3) becomes 

¼G '2 = G 3 - G 2 +/~G + 3' (3.7) 

with arbitrary 13 and 7. 
Equation (3.7) leads to an elliptic integral and has nonsingular, periodic 

solutions of  the form 

G = - a +  (a - b)sn2(u, k) (3.8) 

w i thk  2 = (a - b)/(a - c) and u = O(a - c) 1/2. The three constants a, b, and c 
must satisfy a + b + c = - I ,  a > b > c, and one further condition to make G 
have period 2rr: zr(a - c) 1/2 must be an integer multiple of  

K = f dr(1 - k 2 sin 2 0 -1/2 (3.9) 
o 

Note that the radial part F of  V remains completely arbitrary. The constant 
of  the mot ion is given by  (2.5), (3,5), and (3.6): 

L = M  3 + (1 - 3 G ) M -  ~G'  (3.10) 

When the Schr6dinger equation is separated in polar coordinates, then (3.1) 
and (3.8) give Lam6's equation for the angular part. There are three non- 
degenerate angular functions, namely, dn(u, k), cn(u, k), and sn(u, k). Since L 
converts odd functions into even functions, and vice versa, L must give zero 
when operating on these three functions. The angular equation will also have 
an infinite, discrete set o f  eigenvalues which are twofold degenerate (Ince, 
1940). 

4. A Solut ion in Cartesian Coordinates 

The Cartesian case is very sfi~nilar to the polar case. To get a separable 
solution for V we now put all the constants except for d, e, and r equal to 
zero in equations (2.6)-(2.10). Then (2.9) and (2.10) are satisfied by 

V(x, y )  = f ( x )  + g(y)  (4.1) 
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for arbitrary f and g, and (2.6) and (2.7) give 

~8 = - 3 d r ( x )  - a y  +/~, ¢9 = 3eg(y) + ax  + v 

3 r ¢ = 2r{g(y) - f ( x ) }  + -~{eg ( y )  - dJ(x)}  (4.2) 

Finally, (2.8) is variable separable only if ot = 0, in which case f and g satisfy 
equations like (3.7), and the new resuRs that may  be obtained are essentially 
one.dimensional. Corresponding to (3.8) and (3.10), we have that  the potential  

f ( x )  = - a  + (a - b)sn 2 (u, k)  (4.3) 

with k 2 = ( a  - b)/(a - c) and u = x(a  - c) 1/2, where a > b > c, allows 

Z = p 13 - 3 f ( x ) p  I - ~Jd(X) - (a + b + c ) p  1 (4.4) 

as a constant o f  the motion.  As in the angular case, the one-dimensional 
Schr6dinger equation is Lamd's equation, and L is zero in the lowest three 
energy eigenfunctions dn(u, k) ,  cn(u, k)  and sn(u, k) ,  which have the energies 
- l a  - ½b, -½a - t c ,  and -½b - ½c, respectively. The one-dimensional problem 
will have an infinite, discrete set of  higher-energy eigenvahies, which are two- 
fold degenerate (lnce, 1940). 

In contrast  to the angular potential, where (3.9) must be satisfied to make 
the period 27r, equation (4.3) allows any period. By letting k 2 -+ 1, the non- 

2 2 periodic potential V(x)  = - 7  sech (Tx) is obtained, and the constant of the 
motion becomes L = p 13 - @ p  1 - -  3 Vp 1 - ~ V'. This gives zero when acting 
on the even bound state wave function sech(Tx), or the odd zero-energy wave 
function tanh(Tx ). However, at the positive energy E = ½p2, the even and odd 
parity wave functions are not  the eigenfunctions of  L, which are e+-ipX(p +-i7 
tanh 7x) belonging to the eigenvalues X-ip(7 2 + p2). 

Two other special cases of  equations (2.6)-(2.10) have been studied with 
the assumption (4.1). Taking k and l nonzero in addition to d, e, and r leads 
to either f ( x )  = 0 or gO')  = 0 arid the trivial constants p2 3 or p 13. Taking c, g, 
and h to be nonzero as well, and excluding potentials singular along a line, 
only gives V = a ( x  2 + y 2 )  + ~c + 7Y, which is not  expected to yield any new 
results of  interest. 
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